并 联电容器组的投切和运行,给人们提出了如何有效地减少电容器组在合闸瞬间的电流倍数及抑制电容器中的高次谐波的新问题。

变电所的无功补偿容量

2、 串联滤波电抗器,电抗器阻抗与电容器容抗全调谐后,组成某次谐波的交流滤波器。滤去某次高次谐波,而降低母线上该次谐波的电 压值, 使线路上不存在高次谐波电流,提高电网的电压质量。

7、减小了由于操作并联电容器组引起的过电压幅 值,有利于电网的过电压保护。

调谐设计是实现电容电抗支路在某次谐波谐振点附近出现低阻抗,让该次谐波流经该支路,根据用途不同,有低通、高通 、C型滤波器等 多种常见设计方案,其目标是滤除特定次谐波。失谐设计是实现电容电抗支路对系统中出现的谐波电流的谐振点呈现高阻抗, 从而使谐波不 流经该支路,其目标是确保无功补偿支路自身的安全和提供无功功率补偿。无源滤波设备在保证目标功率因数的前提下,无需 更多分级,否 则不仅会增加成本,还会增加谐振点。

伴随APF技术的成熟和设备造价的降低,因其占地小、无谐振等突出优点,被越 来越多用户青睐使用。结合负荷特点,APF与各种投切电 容器组技术(SFC、TSF)的结合,也成为主流的滤波补偿方案,从而获得更优的补偿 效果和性价比。

变电所的无功补偿容量

2、降低因谐波导致的设 备升温、老化,降容和损坏,提高设备的使用效率,释放系统容量,减少电气设备投资;

随着电力电子技术的发展和广泛应用,电力系统中非线性负载日益增多,如整流器、变频器、UPS、家用电器及 计算机等。这些非线性负 载会产生谐波电流并注入到电网中,使电网中的电压波形产生畸变,从而造成电网的谐波“污染”。另外,冲击性 、波动性负载,如电弧炉 、焊接设备等,在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重,危害电网 的安全运行。

LC滤波器,既可补 偿谐波,又可补偿无功功率,结构简单。缺点是补偿特性受电网阻抗和运行状态的影响,易和系统发生并联谐振,导 致谐波放大使LC滤波器 过载烧毁。它只能补偿固定的频率的谐波,补偿效果不理想。

由于谐波具有固有的非线性、随机性、分布性、非稳定性和影响因素的复杂性等特征 ,难以对谐波进行准确测量,为此许多学者对谐波 分析问题进行了广泛研究。谐波分析算法中使用最为广泛的是快速傅里叶变换方法及其改 进算法,当然基于自适应理论、基于小波变化和基 于神经网络的方法今年来也受到了较大关注,但是在有源电力滤波器中应用最为普遍的是 基于瞬时无功功率理论测量方法,该理论最大有点 在于可以实时分离出各次谐波用于谐波分析。

无功补偿设备的作用主要有以下几点:

变电所的无功补偿容量

电网输出的 功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功 ,这部分功率称 为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电 网中与电能进行 周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中 作功时,电流超前 于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃. 如果在电磁元件电 路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能 力,这就是无功补 偿的道理。

2.电容器回路中的任何不良接触,均可能引起高频振荡电弧,使电容器的工作电场强度增大和发热而早 期损坏。因此,安装时必须保持电气回路和接地部分的接触良好。