随着电力电子技术的发展和广泛应用,电力系统中非线性负载日益增多,如整流器、变频器、UPS、家用电器及 计算机等。这些非线性负 载会产生谐波电流并注入到电网中,使电网中的电压波形产生畸变,从而造成电网的谐波“污染”。另外,冲击性 、波动性负载,如电弧炉 、焊接设备等,在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重,危害电网 的安全运行。

无功补偿如何提高电压

当电网电压或电流中含有谐波时,如何定义各种功率是一个至今尚未得到圆 满解决的问题,这是一个关系到电量计算、分析及控制的重 要问题。如何使定义科学严谨,又能满足各种工程和管理的需要,还有许多问题 需要研究。传统的平均功率理论在系统存在谐波时不能完全 使用,容易造成诸如电能计量变差等问题。本文就针对有源电力滤波器APF而提出 的瞬时无功功率理论,该理论是解决谐波相关问题使用得 最为广泛的功率理论,当然该理论也并不是非常完美,也存在一点的问题,本论文 就提出了一种改进的瞬时无功功率理论。

改善功率因数。要尽量避免发电机降低功率因数运行,同时也防止向远方负 载输送无功引起电压和功率损耗,应在用户处实行低功率因 数限制,即采取就地无功补偿措施。

电网输出的 功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功 ,这部分功率称 为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电 网中与电能进行 周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中 作功时,电流超前 于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃. 如果在电磁元件电 路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能 力,这就是无功补 偿的道理。

由于有源电力滤波器的价钱高,为降低补偿安装的投资,主要方法就是降低有源电力滤波器的容量。目前的主要 思路是将有源电力滤波 器和无源滤波器混合运用,用无源滤波器滤除谐波源中主要的谐波电流,用有源电力滤波器来进步总体的补偿效果, 这就是混合型有源电力 滤波器。有源电力滤波器自身除能补偿谐波外,经过在控制电路上加以改造还能够补偿基波无功、电压闪变以及电压 的不均衡等功用。

无功补偿如何提高电压

计 费方式,采用高供高计。但在低压侧,仍装设计费电度表,采用将照明与动力分开的两部电价法。有些地方供电部门又把空调设备的 用电, 全部划人照明计价系统,一般做法是安装总表及动力表,由总表减去动力表以后,全部为照明电费。

为减少变压器台数,单台变压器的容量选择一般都大于1000kVA.为限制低压侧的短路电流,正常时变压器解列运行,中间设联络开 关。 照明和动力分开设变压器,当动力用电容量太小时,动力变压器可不分开装设,而在低压侧应对动力负荷分类计费。

低压无功补偿装置采用智能低压电子复合开关作为开关元件,彻底解决了电容器投入时的浪涌电流问题,无触头 烧损之虑,无需散热, 更不会产生谐波注入,安全可靠性高。

如果把电容器串联在线路上,补偿线路电抗,改变线路参数,这就是串联补偿。串联补偿可以减少线路电压损失,提高线路末端电 压水 平,减少电网的功率损失和电能损失,提高输电能力。

局部补偿适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽 然单台设备的电流小,谐波含量 低,但为防止其他设备产生的谐波对其干扰,采用局部谐波补偿。

无功补偿如何提高电压

随机补偿:将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切的随机补偿适用于补偿电动机的无功消耗,以补励磁无 功 为主。而且配置方便灵活,不需频繁调整补偿容量。投资少、安装简便。

2.电容的作用--作用之一