电力电容器包括移相电容器、电热电容器、均压电容器、藕合电容 器、脉冲电容器等。移相电容器主要用于补偿无功功率,以提高系统 的功率因数;电热电容器主要用于提高中频电力系统的功率因数;均压 电容器一般并联在断路器的断口上作均压用;藕合电容器主要用于电 力送电线路的通信、测量、控制、保护;脉冲电容器主要用于脉冲电路 及直流高压整流滤波。

无功补偿 效果分析

局部补偿适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽 然单台设备的电流小,谐波含量 低,但为防止其他设备产生的谐波对其干扰,采用局部谐波补偿。

 随器补偿:将低压电容器通过低压保险接在配电变 压器二次侧,以补偿配电变压器空载无功的补偿方式。它能有效地补偿配变空 载无功。限制农网无功基荷,使该部分无功就地平衡,从而提 高配变利用率,降低无功网损,是目前补偿无功最有效的手段之一。

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电 解电容,利用其充放电特性,使 整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化 而产生变化,所以在电源的输出 端及负载的电源输入端一般接有数十至数百微法的电解电容。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此 ,容易使电脑死机;高次谐波会在中性线上叠加,中性线电 流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机 屏幕的频闪现象;由于开关、短路以及负载变化而引起的短 时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸 变会引起在一个正弦周波内的额外过零点,影响测试设备, 干扰程序控制装置的同步性,导致控制装置死机。

无功补偿 效果分析

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正 弦电流大,电 弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装 置动作的设定 值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明 显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发 生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集 中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚 至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾 。

凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成, 外部输入380V/50HZ的 工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为 不规则的矩形波,波 形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ 可以忽略,那么第K 次高次谐波电流的有效值为基波电流的1/K。

(1)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。

由于矿热炉比其它电冶炼炉的电阻弱,故其功率因数相应地也降低些。除了一般小型矿热炉的自然功率 因数能达到0.9以上,而容量在 10000KVA以上的中、大型矿热炉的自然功率因数都在0.9以下,矿热炉容量越大,功率因数越低。这是由于大 容量矿热炉的变压器感性负载 越大,短网越长,电极插入炉料较深增加了短网的电抗,因而降低了矿热炉的功率因数。

无功补偿 效果分析

此技术属于将原来成熟的就地补偿技术应用到矿热炉的二次低压侧,由电容器产生的无功功率 ,通过短线路,一部分通过矿热炉变压器 由系统吸收,另一部分补偿矿热炉变压器,短网和电极的无功损失,增加了输入矿热炉的有功功率 。同时采用了分相补偿,使矿热炉内三相 电极上的有功功率相等,达到提高功率因数,减小三相功率不平衡和改善生产指标的效果。

广泛用于有色金属和黑色金属和熔炼、 加热。如熔炼生铁、普通钢、不锈钢、工具钢、铜、铝、金、银及合金等;透热锻造用途的钢件 、铜件,用于挤压成形的铝锭等;对金属进 行调质、淬火等热处理。中频炉加热装置具有体积小、重量轻、效率高、热加工质量优及有利环 境等优点,正迅速淘汰燃煤炉、燃气炉、燃 油炉及普通电阻炉,是新一代的金属加热设备。