无源滤波设备适用于大多数谐波治理场合,它具有功耗低、造价低、设备稳定可靠等突出优点,是大功率工 业场合的首选。

无功补偿中igbt

由上可见现代商业建筑中采取有效的谐波治理方案势在必行,特别是由3次谐波引起的中性线电流过高,不仅严 重影响了系统稳定性,给 系统运行带来了巨大的安全隐患。当KAFP谐波保护装置投入运行后,可以有效的抑制系统的谐波污染,极好的提升 系统电能质量,改善了系 统工作电源的质量,为配电网络中的各个负载提供理想的电源支持,能显著提高用电设备工作可靠性,提高用电设 备工作效率,释放系统容 量冗余,消除系统安全隐患,让系统在配电安全方面迈上一个新的阶梯。

LC滤波器,既可补 偿谐波,又可补偿无功功率,结构简单。缺点是补偿特性受电网阻抗和运行状态的影响,易和系统发生并联谐振,导 致谐波放大使LC滤波器 过载烧毁。它只能补偿固定的频率的谐波,补偿效果不理想。

当电网电压或电流中含有谐波时,如何定义各种功率是一个至今尚未得到圆 满解决的问题,这是一个关系到电量计算、分析及控制的重 要问题。如何使定义科学严谨,又能满足各种工程和管理的需要,还有许多问题 需要研究。传统的平均功率理论在系统存在谐波时不能完全 使用,容易造成诸如电能计量变差等问题。本文就针对有源电力滤波器APF而提出 的瞬时无功功率理论,该理论是解决谐波相关问题使用得 最为广泛的功率理论,当然该理论也并不是非常完美,也存在一点的问题,本论文 就提出了一种改进的瞬时无功功率理论。

无功补偿设备的作用主要有以下几点:

无功补偿中igbt

电网输出的 功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功 ,这部分功率称 为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电 网中与电能进行 周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中 作功时,电流超前 于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃. 如果在电磁元件电 路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能 力,这就是无功补 偿的道理。

由于有源电力滤波器的价钱高,为降低补偿安装的投资,主要方法就是降低有源电力滤波器的容量。目前的主要 思路是将有源电力滤波 器和无源滤波器混合运用,用无源滤波器滤除谐波源中主要的谐波电流,用有源电力滤波器来进步总体的补偿效果, 这就是混合型有源电力 滤波器。有源电力滤波器自身除能补偿谐波外,经过在控制电路上加以改造还能够补偿基波无功、电压闪变以及电压 的不均衡等功用。

灵敏的补偿方式 一机多能,不只能管理谐波,而且能补偿 无功、进步功率因数。既可对单个谐波源独立补偿,也可对多个谐波源集中补 偿。管理谐波时还可完成对指定次谐波停止管理。

为减少变压器台数,单台变压器的容量选择一般都大于1000kVA.为限制低压侧的短路电流,正常时变压器解列运行,中间设联络开 关。 照明和动力分开设变压器,当动力用电容量太小时,动力变压器可不分开装设,而在低压侧应对动力负荷分类计费。

低压无功补偿装置采用智能低压电子复合开关作为开关元件,彻底解决了电容器投入时的浪涌电流问题,无触头 烧损之虑,无需散热, 更不会产生谐波注入,安全可靠性高。

无功补偿中igbt

电容器在交流电压作用下能“发”无功电力(电 容电流),如果把电容器并接在负荷(如电动机)或供电设备(如变压器)上运行,那 么,负荷或供电设备要“吸收”的无功电力,正好由 电容器“发出”的无功电力供给,这就是并联补偿。并联补偿减少了线路能量损耗,可 改善电压质量,提高功率因数,提高系统供电能力。

使用有源电 力滤波器进行谐波治理,主要有集中、局部和就地补偿三种方案。