在停电处理时用备品补齐,没有备品采用拆除相应的电容器来配齐各相间的电容量平衡,同时注意三点:(1)三相间,两个星形间(双Y接线时)的电容量应配置平衡;(2)各相的上下两段串联间的电容量平衡,否则两段电容器承受电压不同,电容量小的段电压可能超过电容器的额定电压;(3)电压可能超过标准持续运行允许的1.1倍额定电压,保护不会动作于跳闸,故障发生在上段或下段时,保护灵敏度也不同。

电容器完好状态下,发生熔断器不正常熔断,其原因是:熔丝质量不好或者热容量不够;连接时熔丝损伤,如轧伤,压伤等;使用铁质螺栓连接,因锈蚀接触不良;弹簧锈蚀,弹力不够;安装角度不符合要求,影响弹力。对策如下:

户外式电容器受天气及周围环境的影响,外壳,构架油漆容易脱落和生锈,同时,外壳,支持绝缘子和其他配件如不定期清扫会严重积尘,不利于电容器安全运行。因此要定期对设备进行维护,特别是周围环境不大好的更要重视。使之电容器外壳,构架以及其他设备保持油漆完好和良好的辐射表面,构架采用涂锌件,防止生锈。另外,户外式设备拟每季或半年清扫一次,但是要根据季节特点和周围环境做到勤清扫,如某变电站每年2次雾季前进行小水量边冲边揩,效果很好。/p>

有源滤波跟无源滤波

与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰;电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。高次谐波的危害具体表现在以下几个方面:

(3)电力电容器:当高次谐波产生时由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。

(1)在变频器交流输入侧设置交流电抗器增大整流阻抗使整流重叠角增大,减小高次谐波。

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。

对负载进行无功补偿先要究其缘由,找出造成无功功率产生的原因,然后计算无功需求量,最后安装无功补偿设备。无功功率的产生一般是因为电力部门所传送的三相电本身存在缺陷,也就是质量上并不过关;另外一个原因就是企业用电机械和住户用电设备的性能不高,导致无功功率不稳定的传送。无功功率是影响电力系统中电压的重要参考要素,而控制电压就是通过控制电力系统中的无功功率来实现的。

由此可见功率因数的高低对系统影响很大,过高或太低,都会存在罚款,而且都会造成不同的影响;个人认为它就好比车轴的润滑油,太少会增加车轴的负担减少寿命,太多会造成打滑;功率因数不仅对电力系统,而且对企业的经济运行有着重大意义。工业企业在考虑提高功率因数时,应采用人工无功补偿装置,以提高电力系统的功率因数,改善供电质量。无功补偿电容器具有投资少,有功功率损耗小,结构简单紧凑,运行维护方便,故障范围小等优点,故在一般企业供配电系统得到广泛应用。确定无功功率的补偿方案,除应作技术经济比较外,还应考虑下列因素:

当电流在纯电阻即电阻为零的情况,电流能够全部正常的转换为所需要的能量,进行无功功率补偿。这个时候的电流是不进行任何做功过程的,消耗的电能为零。但是在实际的生产和用电过程中,我们所使用的电流载体都为非纯容性或纯感性,存在一定的电阻,有时候甚至会很大,这个时候的电流没有全部转换为我们所需要的能量,反倒进行了做功过程。电能没有得到很好的利用,造成了大量电能的浪费现象。

有源滤波跟无源滤波

(3)使网络电力损耗增加(网络中的电能损失与功率值一平方成反比),如电机、变压器、电力电缆等;

有源滤波器结合无功功率补偿装置,可大大降低设备损耗,避免浪费。有源滤波器是一种动态监测系统,所以能够对电网中的谐波进行及时有效的滤除,而且效率极高,一般完成度都在百分之九十以上。