2)无源滤波器技术成熟,性价比高,但有其固定缺陷无源滤波器的工作原理决定了它存在着:谐振频率依赖于元件参数,因此只能对主要谐波进行滤波,且LC参数的漂移会导致滤波特性改变,使滤波性能不稳定;滤波特性依赖于电网参数,而电网的阻抗和谐波频率随着电力系统的运行工况随时改变,因而LC网络的设计较困难;电网的参数与LC可能产生并联谐振使改次谐波分量放大,使电网供电质量下降;电网中的某次谐波电压可能在LC网络中长生很大的谐波电流等固有缺陷。

4)谐波检测准备性有待提高在谐波和无功的实时检测方面,现有的方法都难以同时满足检测精度和检测的快速响应性能,只能在这两者之间采用折中的方式,在满足一定的检测精度的基础上尽可能提高检测的动态响应速度。另外,现有的检测方法没有考虑到基波电流远大于谐波电流的实际情况,也没有考虑到基波电流波动对谐波电流检测的影响,因此,在谐波含量很小和基波电流波动较大时会有较大的检测误差。

6)谐波治理控制策略应更灵活在控制策略方面,电力系统以及有源滤波器的非线性和各个控制参数之间的耦合作用使得有源电力滤波器难以获得很好的补偿性能,为此,需研究诸如自适控制,非线性控制以及控制参数之间的解藕控制等先进控制算法。另外,现有的控制策略都是自始自终都采用同种控制规律,不能根据电网参数的变化自动选择更为优越的控制策略。

太原有源滤波无功补偿

7)高压直流输电系统的谐波智力仍以无源滤波器为主,有源滤波已有研究和探讨。高压直流输电具有高压电压,大容量,远距离输电的特点,而自身工作原理又决定了其整流器和逆变器在运行过程中都不可避免地要产生大量的谐波,这些谐波必须通过滤波装置来加以抑制。以往的高压直流输电工程无论交流侧还是直流侧都采用无源滤波器,近年来,由于高电压,大功率的电力电子元件的出现,已有高压直流输电工程开始研究与探讨有源滤波器的应用。现在多数高压直流侧均为用两组双调谐滤波器进行滤波,这种滤波方式基本能够满足滤波的技术性能要求,但其经济性不太理想。

在工业建筑供配电设计中,大量的感性负荷使得功率因数偏低。需要进行无功补偿以提高供电系统及负荷的功率因数。降低配电线路无功电流,提高用电设备的效率;稳定用电端及电网的电压,提高供电质量,增加输电系统的稳定性,提高输电能力;减少无功功率对电网的冲击。

改善功率因数。要尽量避免发电机降低功率因数运行,同时也防止向远方负载输送无功引起电压和功率损耗,应在用户处实行低功率因数限制,即采取就地无功补偿措施。

电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理。

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

(2)感应电动机:电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。

另外,高次谐波还会对电脑、通信设备、电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。

太原有源滤波无功补偿

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。

对负载进行无功补偿先要究其缘由,找出造成无功功率产生的原因,然后计算无功需求量,最后安装无功补偿设备。无功功率的产生一般是因为电力部门所传送的三相电本身存在缺陷,也就是质量上并不过关;另外一个原因就是企业用电机械和住户用电设备的性能不高,导致无功功率不稳定的传送。无功功率是影响电力系统中电压的重要参考要素,而控制电压就是通过控制电力系统中的无功功率来实现的。