在低压配电系统中,无功补偿的补偿位置、补偿方式、补偿容量、控制器的选择、串联电抗器的选择等,都需要针对不同的项目进行优化设计。目前工程实际存在的无功补偿方式按补偿位置分类有集中补偿、就地补偿和分组补偿。其中在变电站集中补偿的方式最为广泛。为了抑制电容器回路合闸涌流和谐波电流,通常在电容器回路中串接电抗器。串入的电抗器自身的感抗会抵消电容器的部分容抗。反向压降会抬高电容器的端电压,即对电容器的有效补偿量产生影响。因而,在进行无功补偿容量的计算时,要根据系统运行电压、电抗率的选择以及电容器额定电压进行修正计算,算出实际需要的无功补偿容量,下面对低压配电系统集中补偿的无功容量的选择进行简单分析。

调节负载的平衡性。当正常运行中出现三相不对称运行时,会出现负序、零序分量,将产生附加损耗,使整流器波纹系数增加,引起变压器饱和等,经补偿设备就可使不平衡负载变成平衡负载。

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

机架式有源电力滤波器

(2)感应电动机:电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。

(4)开关设备:由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

(2)在电力回路中并联使用交流滤波装置,能将来自变频器的高次谐波分量与电源系统分流。

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。

对负载进行无功补偿先要究其缘由,找出造成无功功率产生的原因,然后计算无功需求量,最后安装无功补偿设备。无功功率的产生一般是因为电力部门所传送的三相电本身存在缺陷,也就是质量上并不过关;另外一个原因就是企业用电机械和住户用电设备的性能不高,导致无功功率不稳定的传送。无功功率是影响电力系统中电压的重要参考要素,而控制电压就是通过控制电力系统中的无功功率来实现的。

使用电力的用户,需要安装相关设备改变无功功率的流动,而无功补偿就是通过减少或者补偿电力传送过程中的无功功率来实现对电压的控制,以实现降低损耗,提升质量,保证电力系统安全的目标。

由此可见功率因数的高低对系统影响很大,过高或太低,都会存在罚款,而且都会造成不同的影响;个人认为它就好比车轴的润滑油,太少会增加车轴的负担减少寿命,太多会造成打滑;功率因数不仅对电力系统,而且对企业的经济运行有着重大意义。工业企业在考虑提高功率因数时,应采用人工无功补偿装置,以提高电力系统的功率因数,改善供电质量。无功补偿电容器具有投资少,有功功率损耗小,结构简单紧凑,运行维护方便,故障范围小等优点,故在一般企业供配电系统得到广泛应用。确定无功功率的补偿方案,除应作技术经济比较外,还应考虑下列因素:

机架式有源电力滤波器

(1)降低了发电机的输出功率,当发电机需提高无功输出,低于额定功率因数运行时,发电机有功输出将降低;

在现代电网系统问题中,谐波污染问题一直存在,而谐波治理问题也备受政府和企业关注。谐波污染的危害极大,会导致电气设备加速老化,损耗加重,使用效率降低等问题,还容易产生干扰信号,影响精密仪器操作,给生活和生产受到影响。更为严重的是,它还极有可能造成重大安全事故,间接危害人们的身体健康。一般谐波滤除方法分为有源和无源两种方式,相比较来说有源滤波器价格稍贵,但从性价比上考虑,使用有源滤波器是比较明智的。