智能建筑中谐波主要来自两方面:一是大量非线性负荷形成的谐波源,例如计算机系统、开关电源、电子式荧光整流器等导致配电系统的电压、电流发生畸变,产生谐波;二是公用电网本身具有一定的谐波含量和配电变压器作为谐波源产生的谐波,由公用电网侧传输至配电系统。

②智能建筑中线缆密布,系统设备繁多,微电子装备复杂,且防护能力弱,高次谐波将会使智能化系统设备产生误码、错码、误动作,使信号系统受到污染、产生噪声,甚至连通话质量都不能保证。随着低电压信号在IT设备中使用的增加,比特错误率也随之提高,甚至可以高到使整个网络瘫痪。

⑤电压谐波会导致感应电动机的额外损耗。高次谐波导致的扭矩脉动在联轴器和轴承处会产生磨损和裂纹。由于电机速度是固定的,谐波中储藏的能量就以额外的热量形式散发了,导致设备过早老化。

有源电力滤波器拓扑结构

(2)电容器装置接入处的背景谐波为3次、5次

无源滤波的主要结构是用电抗器与电容器串联起来,组成LC串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。因而,其市场的前景可观,经济效益也就可观了。

有源谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以

使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。

■扩大高比功率超级电容器的生产规模,实现突破百万件的年生产量;

输入侧产生谐波机理:不限于通用变频器,晶闸管供电的直流电动机、无换向器电动机等凡是在电源侧有整流回路的,都将产生因其非线性引起的谐波。在三相桥式整流回路中,输入电流的波形为矩形波,波形按傅立叶级数分解为基波和各次谐波,通常含有6n+1(n=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统。

4、非线性负荷在其工作过程中将基波的部分功率转变成谐波有功,谐波有功将在网络内流动,并在各输配电元件和其他设备中产生损耗和干扰。

有源电力滤波器拓扑结构

目前,微型超级电容器在智能三表、消费电子和小型机械设备上得到广泛应用。由于超级电容具备使用寿命长、充电时间短、可显示存电量、材料无限、低温性能良好等优点,市场对超级电容在新能源汽车、轨道交通、风光发电、军工等领域的应用赋予了较大期待。

近年来,我国超级电容技术得到了较大提升,并在公交和轨道交通领域投入了运营。但是,由于国家财政补贴政策的调整,超级电容纯电动客车失去了纯电动客车的补贴待遇,市场也受到了严重压缩,使得刚刚起步的超级电容产业受到了\"重创\"。