电力系统中常会因为输送无功功率而造成电力系统无端的能源浪费,而对电网进行无功补偿是实现电能效率最大,保证电力系统运行安全,降低能源损耗的重要举措。除此之外,无功补偿也能在一定程度上治理谐波的污染,当然这需要谐波治理的相关设备一同进行配合才能事半功倍。同时,无功补偿能改善电力系统环境,提高用电质量。

使用电力的用户,需要安装相关设备改变无功功率的流动,而无功补偿就是通过减少或者补偿电力传送过程中的无功功率来实现对电压的控制,以实现降低损耗,提升质量,保证电力系统安全的目标。

由此可见功率因数的高低对系统影响很大,过高或太低,都会存在罚款,而且都会造成不同的影响;个人认为它就好比车轴的润滑油,太少会增加车轴的负担减少寿命,太多会造成打滑;功率因数不仅对电力系统,而且对企业的经济运行有着重大意义。工业企业在考虑提高功率因数时,应采用人工无功补偿装置,以提高电力系统的功率因数,改善供电质量。无功补偿电容器具有投资少,有功功率损耗小,结构简单紧凑,运行维护方便,故障范围小等优点,故在一般企业供配电系统得到广泛应用。确定无功功率的补偿方案,除应作技术经济比较外,还应考虑下列因素:

鞍山生产有源滤波企业

对于供用电设备大多数都是感性负载,感性负载能量体现为电磁转换,电部分转换成我们实际所需的有功功率,磁部分需要消耗无功功率,无功功率供给有两种方式,一种是从用电系统索取,这样会导致功率因数低下;另一种是给感性负载加补偿装置,就地补偿感性负载所需的无功功率。

有源滤波装置实时检测电网中负载电流,快速分离出谐波电流分量,并根据谐波电流的大小发出控制指令,实时产生大小相等、方向相反的补偿电流注入到电网中,实时瞬时抵消滤除谐波电流及无功补偿。

首先,能够满足电力公司对于谐波电流的限制要求:

电能质量(PowerQuality),从严格意思上讲,衡量电能质量的主要指标有电压、频率和波形。从普遍意义上讲是指优质供电,包括电压质量、电流质量、供电质量和用电质量。电能质量问题可以定义为:导致用电设备故障或不能正常工作的电压、电流或频率的偏差,其内容包括频率偏差、电压偏差、电压波动与闪变、三相不平衡、瞬时或暂态过电压、波形畸变(谐波)、电压暂降、中断、暂升以及供电连续性等。

1.电压不平衡是指三相电压的幅值或相位不对称。不平衡的程度用不平衡度(电压负序分量和正序分量的方均根值百分比)来表示,典型的三相不平衡是指不平衡度超过2%,短时超过4%。在电力系统中,各种不平衡工业负荷以及各种接地短路故障都会导致三相电压的不平衡。

5.电压骤升是指在工频下,电压的有效值短时间内上升。典型的电压骤升值为1.1~1.8倍标称值,持续时间为0.5个周期到1分钟。电压骤升产生的原因主要有电力系统发生故障,如系统发生单相接地等故障;大容量电机的停止和负载突降也是电压骤升的重要原因。

7.电压瞬变又称为瞬时脉冲或突波,是指两个连续的稳态之间的电压值发生快速的变化,其持续时间很短。电压瞬变按照电压波形的不同分为两类:一是电压瞬时脉冲,是指叠加在稳态电压上的任一单方向变动的电压非工频分量;二是电压瞬时振荡,是指叠加在稳态电压的同时包括两个方向变动的电压非工频分量。电压瞬变可能是由闪电引起的,也可能是由于投切电容器组等操作产生的开关瞬变。

鞍山生产有源滤波企业

3.消弧电抗器——又称消弧线圈。接于3相变压器的中性点与地之间,用以在3相电网的1相接地时供给电感性电流,以补偿流过接地点的电容性电流,消除过电压。

并联电抗器降低工频电压升高。超高压输电线路一般距离较长,可达数百公里,由于线路采用分裂导线,线路的相间和对地电容均很大,在线路带电的状态下,线路相间和对地电容中产生相当数量的容性无功功率(即充电功率),且与线路的长度成正比,其数值可达200~300kvar,大量容性功率通过系统感性元件(发电机、变压器、输电线路)时,末端电压将要升高,即所谓“荣升”现象。在系统为小运行方式时,这种现象尤其严重。在超高压输电线路上接入并联电抗器后,可明显降低线路末端工频电压的升高。