在工业建筑供配电设计中,大量的感性负荷使得功率因数偏低。需要进行无功补偿以提高供电系统及负荷的功率因数。降低配电线路无功电流,提高用电设备的效率;稳定用电端及电网的电压,提高供电质量,增加输电系统的稳定性,提高输电能力;减少无功功率对电网的冲击。

改善功率因数。要尽量避免发电机降低功率因数运行,同时也防止向远方负载输送无功引起电压和功率损耗,应在用户处实行低功率因数限制,即采取就地无功补偿措施。

电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理。

有源滤波谐波放大

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

(4)开关设备:由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

另外,高次谐波还会对电脑、通信设备、电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。

对负载进行无功补偿先要究其缘由,找出造成无功功率产生的原因,然后计算无功需求量,最后安装无功补偿设备。无功功率的产生一般是因为电力部门所传送的三相电本身存在缺陷,也就是质量上并不过关;另外一个原因就是企业用电机械和住户用电设备的性能不高,导致无功功率不稳定的传送。无功功率是影响电力系统中电压的重要参考要素,而控制电压就是通过控制电力系统中的无功功率来实现的。

由此可见功率因数的高低对系统影响很大,过高或太低,都会存在罚款,而且都会造成不同的影响;个人认为它就好比车轴的润滑油,太少会增加车轴的负担减少寿命,太多会造成打滑;功率因数不仅对电力系统,而且对企业的经济运行有着重大意义。工业企业在考虑提高功率因数时,应采用人工无功补偿装置,以提高电力系统的功率因数,改善供电质量。无功补偿电容器具有投资少,有功功率损耗小,结构简单紧凑,运行维护方便,故障范围小等优点,故在一般企业供配电系统得到广泛应用。确定无功功率的补偿方案,除应作技术经济比较外,还应考虑下列因素:

无论是在日常生产还是生活中,科学的进行无功补偿具有重要的实际意义。并且企业和单位需要定期的对变压器和无功补偿设备进行全面的诊断和检测,避免由于设备损坏造成的电能的耗费,真正达到有效用电,节约用电的最终目的。

有源滤波谐波放大

若功率因数比较低,如不采用人工补偿,将会造成如下不良影响:

有源滤波装置实时检测电网中负载电流,快速分离出谐波电流分量,并根据谐波电流的大小发出控制指令,实时产生大小相等、方向相反的补偿电流注入到电网中,实时瞬时抵消滤除谐波电流及无功补偿。