2.过电压是指持续时间大于1分钟,幅值大于标称值的电压。典型的过电压值为1.1~1.2倍标称值。过电压主要是由于负载的切除和无功补偿电容器组的投入等过程引起,另外,变压器分接头的不正确设置也是产生过电压的原因。

6.供电中断是指在一段时间内,系统的一相或多相电压低于0.1倍标称值。瞬时中断定义为持续时间在0.5个周期到3秒之间的供电中断,短时中断的持续时间在3~60秒之间,而持久停电的持续时间大于60秒。

2.并联电抗器——一般接于超高压输电线的末端和地之间,起无功补偿作用。

有源无源滤波器实验报告

并联电抗器降低工频电压升高。超高压输电线路一般距离较长,可达数百公里,由于线路采用分裂导线,线路的相间和对地电容均很大,在线路带电的状态下,线路相间和对地电容中产生相当数量的容性无功功率(即充电功率),且与线路的长度成正比,其数值可达200~300kvar,大量容性功率通过系统感性元件(发电机、变压器、输电线路)时,末端电压将要升高,即所谓“荣升”现象。在系统为小运行方式时,这种现象尤其严重。在超高压输电线路上接入并联电抗器后,可明显降低线路末端工频电压的升高。

并联电抗器可避免发电机带空长线出现自励过电压。当发电机经变压器带空载长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空长线电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路的容性无功功率,破坏发电机自励磁条件。

由于电力系统中使用了大量的电力电子器件,特别是大功率直流及变频设备等,产生了大量的谐波,致使补偿电容器频繁损坏,甚至无法投入补偿电容器。当谐波较小时,可以用谐波抑制器,电力系统中谐波较高时,要用串联电抗器,也可在滤波器中与电容器串联或并联用来限制电网中的高次谐波。

消弧电抗器接于三相变压器的中性点与地之间,在三相电网的一相接地时,可以供给感性电流,以补偿流过接地点的电容性电流,使电弧不易起燃,从而避免电弧多次重燃引起过电压。消弧电抗器广泛用于6kV-10kV级的谐振接地系统。

智能建筑中谐波主要来自两方面:一是大量非线性负荷形成的谐波源,例如计算机系统、开关电源、电子式荧光整流器等导致配电系统的电压、电流发生畸变,产生谐波;二是公用电网本身具有一定的谐波含量和配电变压器作为谐波源产生的谐波,由公用电网侧传输至配电系统。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

有源无源滤波器实验报告

(1)电容器装置接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5~6(%)与12%两种电抗率。设计规范说的较含糊,实际较难执行。因此上述情况应区别对待:

b.5次谐波含量较大,应选择4.5%的串联电抗器。