当电流在纯电阻即电阻为零的情况,电流能够全部正常的转换为所需要的能量,进行无功功率补偿。这个时候的电流是不进行任何做功过程的,消耗的电能为零。但是在实际的生产和用电过程中,我们所使用的电流载体都为非纯容性或纯感性,存在一定的电阻,有时候甚至会很大,这个时候的电流没有全部转换为我们所需要的能量,反倒进行了做功过程。电能没有得到很好的利用,造成了大量电能的浪费现象。

在现代电网系统问题中,谐波污染问题一直存在,而谐波治理问题也备受政府和企业关注。谐波污染的危害极大,会导致电气设备加速老化,损耗加重,使用效率降低等问题,还容易产生干扰信号,影响精密仪器操作,给生活和生产受到影响。更为严重的是,它还极有可能造成重大安全事故,间接危害人们的身体健康。一般谐波滤除方法分为有源和无源两种方式,相比较来说有源滤波器价格稍贵,但从性价比上考虑,使用有源滤波器是比较明智的。

国家政策一直对谐波滤除实行强硬的管理规范,倡导企业使用有源滤波器作为主要谐波滤除装置,而类型的滤波器容易导致共振,并且对于功率补偿效果不佳,使用有源滤波就可以避免这些麻烦。

有源电力滤波器国内外发展情况

眼下不少企业仅在出现了故障现象后,才开始考虑谐波治理的问题。其中,谐波导致无功补偿装置烧毁的情况最为常见。

2.过电压是指持续时间大于1分钟,幅值大于标称值的电压。典型的过电压值为1.1~1.2倍标称值。过电压主要是由于负载的切除和无功补偿电容器组的投入等过程引起,另外,变压器分接头的不正确设置也是产生过电压的原因。

4.电压骤降是指在工频下,电压的有效值短时间内下降。典型的电压骤降值为0.1~0.9倍标称值,持续时间为0.5个周期到1分钟。电压骤降产生的原因主要有电力系统发生故障,如系统发生接地短路故障;大容量电机的启动和负载突增也会导致电压骤降。

7.电压瞬变又称为瞬时脉冲或突波,是指两个连续的稳态之间的电压值发生快速的变化,其持续时间很短。电压瞬变按照电压波形的不同分为两类:一是电压瞬时脉冲,是指叠加在稳态电压上的任一单方向变动的电压非工频分量;二是电压瞬时振荡,是指叠加在稳态电压的同时包括两个方向变动的电压非工频分量。电压瞬变可能是由闪电引起的,也可能是由于投切电容器组等操作产生的开关瞬变。

2.并联电抗器——一般接于超高压输电线的末端和地之间,起无功补偿作用。

并联电抗器降低工频电压升高。超高压输电线路一般距离较长,可达数百公里,由于线路采用分裂导线,线路的相间和对地电容均很大,在线路带电的状态下,线路相间和对地电容中产生相当数量的容性无功功率(即充电功率),且与线路的长度成正比,其数值可达200~300kvar,大量容性功率通过系统感性元件(发电机、变压器、输电线路)时,末端电压将要升高,即所谓“荣升”现象。在系统为小运行方式时,这种现象尤其严重。在超高压输电线路上接入并联电抗器后,可明显降低线路末端工频电压的升高。

并联电抗器降低操作过电压。操作过电压产生于断路器的操作,当系统中用断路器接通或切除部分电气元件时,在断路器的断口上会出现操作过电压,它往往是在工频电压升高的基础上出现的,如甩负荷、单相接地等均产生工频电压升高与操作过电压迭加,使操作过电压更高。所以,工频电压升高的程度直接影响操作过电压的幅值。加装并联电抗器后,限制了工频电压升高,从而降低了操作过电压的幅值。当断路器带有并联电抗器的空载线路时,被开断线路上的剩余电荷沿着电抗器泄入大地,使断路器断口上的恢复电压由零缓慢上升,大大降低了断路器断口发生重燃的可能性,因此也降低了操作过电压。

有源电力滤波器国内外发展情况

并联电抗器可避免发电机带空长线出现自励过电压。当发电机经变压器带空载长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空长线电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路的容性无功功率,破坏发电机自励磁条件。

电力系统发生短路时,会产生非常大的短路电流。为了保障电气设备的动稳定性和热稳定性,常在出线断路器处串联电抗器,以增大短路阻抗,达到限制短路电流的目的。由于采用了电抗器,在发生短路时,电抗器上的电压降较大,也起到了维持母线电压的作用,使母线上的电压波动较小,保证了非故障线路上的电气设备运行的稳定性。