无功补偿

计算机和一 些其它电子设备,通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成 生产或运行中断,导致较大的经济损失。

高次谐波主要通过传导和感应耦合两种方式对电 源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合 是指谐波在传导的过程中,与此电源线平行敷设的导线又会产生电磁耦合,形成感应干扰。

隔 离技术是电磁兼容性中的重要技术之一。所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。

无功补偿

变频器的各种接地在没汇到接地汇流排前,彼此 之间应保证绝缘,避免接地干扰。

调谐滤波电容器组,由数段电容器及调谐电抗器组合而成 ,每段形成串联共振回路,使共振频率低于最低之谐波频率。对含有5次以上谐波的系统,使用带6%电抗器的调谐式电容器组;对含有3次以 上谐波的系统,使用带14%电抗器的调谐式电容器组。在基本波频率(50Hz)下,调谐滤波电容器组呈现电容性,以提供无功功率;而在谐波频 率下,则呈现电感性,故与网络不会形成并联共振回路,亦即不会造成谐波放大。因此,调谐滤波电容器组,可安全补偿无功功率,亦可消 除低次谐波电流约30%。

在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源|稳压器的退耦、交流信号的旁路、交 直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指标和一般特性,而且还必须了 解在给定用途下各种元件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。

3.额定电压(UR)。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直 流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在 空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的 电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4.损耗角正切(tgδ)。在规定频率的正弦电压下,电 容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路 如附图所示。对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。

7.绝缘电阻。由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低 。

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一 个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时, 阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不 允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。

伴随着射频电流的电磁辐射。

无功补偿

随着科学技术的发展,工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重 越来越大。谐波给电力系统带来的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝 缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。 谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。因此, 对谐波的研究以及如何抑制、治理已成为一个具有重要意义的课题。

(一)谐波的定义:在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与 所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。电力谐波是频率为50HZ整倍数的正弦波电压或电流。发电厂或者发电 机发出的电压是频率为50HZ的正弦波波型,称为基波,50HZ称为基波频率。频率为50HZ整倍数的正弦波称为谐波。谐波用基波的倍数表示, 例如频率为150HZ的正弦波称为3次谐波,频率为250HZ的正弦波称为5次谐波,频率为350HZ的正弦波称为7次谐波,以此类推。谐波是正弦波 ,每个谐波都具有不同的频率,幅度与相角。