无功率自动补偿控制器

功率因数按规定应补偿到0.9-0.95.无功补偿都采用集中补偿方式。为降低变压器容量,多集中 装设在低压侧,与配电屏放在一起,但必须采用于式移相电容器。

电力电容器是一种无功补偿装置。电力系统的负 荷和供电设备如电动机、变压器、互感器等,除了消耗有功电力以外,还要“吸收”无功电力。如果这些无功电力都由发电机供给,必将影 响它的有功出力,不但不经济,而且会造成电压质量低劣,影响用户使用。

电力电容器包括移相电容器、电热电容器、均压电容器、藕合电容 器、脉冲电容器等。移相电容器主要用于补偿无功功率,以提高系统的功率因数;电热电容器主要用于提高中频电力系统的功率因数;均压 电容器一般并联在断路器的断口上作均压用;藕合电容器主要用于电力送电线路的通信、测量、控制、保护;脉冲电容器主要用于脉冲电路 及直流高压整流滤波。

无功率自动补偿控制器

局部补偿适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽 然单台设备的电流小,谐波含量低,但为防止其他设备产生的谐波对其干扰,采用局部谐波补偿。

跟踪补偿:是指以无功补偿投切装置作为控制保护装置, 将低压电容器组补偿在大用户0.4KV母线上的补偿方式。适用于100K V A以上的专用配变用户, 可以替代随机、随器两种补偿方式,补偿效 果好。

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电 解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化 而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此 ,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机 屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸 变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

③在谐波电压作用下,电容器会产生额外的功率损耗,加快绝缘介质的老化。更为严重的是,大量谐波电流很可能引发电容器和系 统其他元件之间的并联谐振或串联谐振,造成电容器超载而损坏;使与电容器连接的配电回路中所有线路、设备因电压闪变、超压、过负荷 而损坏。

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明 显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集 中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾 。

凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成, 外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为 不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ 可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。

无功率自动补偿控制器

高次谐波的危害具体表现在以下几个方面:

计算机和一 些其它电子设备,通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成 生产或运行中断,导致较大的经济损失。