无功补偿器安装

随着国民经济的发展,负荷日益增多,供电容量扩大,无功补偿工作必须相应跟上去。用电容器作为无 功补偿时,投资少,损耗小,便于分散安装,使用较广。当然,由于系统稳定的要求,必须配备一定比例的调相机。

提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。

电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路 现象,使得电容器有着种种不同的用途,例如:在电动马达中,用它来产生相移;在照相闪光灯中,用它来产生高能量的瞬间放电等等。而在 电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。

无功补偿器安装

智能建筑中谐波主要来自两方面:一是大量非线性负荷形成的谐波 源,例如计算机系统、开关电源、电子式荧光整流器等导致配电系统的电压、电流发生畸变,产生谐波;二是公用电网本身具有一定的谐波 含量和配电变压器作为谐波源产生的谐波,由公用电网侧传输至配电系统。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此 ,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机 屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸 变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正 弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装 置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明 显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集 中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾 。

凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成, 外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为 不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ 可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。

谐波问题由来已久,近年来这 一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得 与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以 谐振的方式加重了谐波的危害。

由于谐波电流使开关设备在起动瞬间产 生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

无功补偿器安装

高次谐波由于频率增大,电容器对高次谐波阻抗减小,因过电流而导致温度升高过热、甚至损坏电容器;电容器与系统中的感性负 荷构成的并联或串联电路,还有可能发生谐波共振,放大谐波电流或电压加重谐波的危害。经由电容器组电容和电网电感形成的并联谐振回 路,可被放大到10-15倍。

高次谐波主要通过传导和感应耦合两种方式对电 源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合 是指谐波在传导的过程中,与此电源线平行敷设的导线又会产生电磁耦合,形成感应干扰。