无功补偿电容器更换

电容(Capacitance)亦称作“电容量”,是一种我们经常使用到的电子元件,电容器是一种能储存电荷的容器.它是由两片 离得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器 等.

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电 解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化 而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此 ,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机 屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸 变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

无功补偿电容器更换

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正 弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装 置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电 气设备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离 、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。

在三相回路中,三的整数倍次谐波电流 是零序电流,零序电流在中性线中是相互叠加的。零序谐波电流主要是由三相四线制非线性设备产生的,使供电系统中的中性线电流很大。 当中性线上有较大的谐波电流时,中性导线的阻抗在谐波下能产生大的中性线电压降,此中性线电压降以共模干扰形式干扰计算机和各种微 电子系统的正常工作,使控制设备和精密仪器工作不可靠,故障率高。

谐波电流和谐波电压将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产 生共振及噪声。

计算机和一 些其它电子设备,通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成 生产或运行中断,导致较大的经济损失。

高次谐波主要通过传导和感应耦合两种方式对电 源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合 是指谐波在传导的过程中,与此电源线平行敷设的导线又会产生电磁耦合,形成感应干扰。

隔 离技术是电磁兼容性中的重要技术之一。所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。

无功补偿电容器更换

变频器的各种接地在没汇到接地汇流排前,彼此 之间应保证绝缘,避免接地干扰。

调谐滤波电容器组,由数段电容器及调谐电抗器组合而成 ,每段形成串联共振回路,使共振频率低于最低之谐波频率。对含有5次以上谐波的系统,使用带6%电抗器的调谐式电容器组;对含有3次以 上谐波的系统,使用带14%电抗器的调谐式电容器组。在基本波频率(50Hz)下,调谐滤波电容器组呈现电容性,以提供无功功率;而在谐波频 率下,则呈现电感性,故与网络不会形成并联共振回路,亦即不会造成谐波放大。因此,调谐滤波电容器组,可安全补偿无功功率,亦可消 除低次谐波电流约30%。