无功功率补偿计算软件

我国还是一个发展中国家,经济的大发展需要大量的电力供应,工业负荷也不断大量增加,如:大型电力电子应用装置、 变频设备、电气化铁道、炼钢电弧炉、冶金化工设备、高速铁路、电梯、起重机等,这些工业负荷对整个城市的电网质量都带来大量的谐波 干扰,随着这些非线性、冲击性负荷的大量使用,使得电能质量变得更加突出。这些年在城市里很少遇到大面积的停电,但是电压的波动就 时有发生了,比如家里的灯泡突然变得忽明忽暗,尤其是到了夏天用电高峰期,总感觉家里的灯泡不是那么亮,实际上这时电网的电压运行 在较低的水平,在输出电流不变的情况下,灯泡的功率就低了,看起来也就不会那么亮了。数据中心里有不少的精密仪器,对电网运行质量 较敏感,设备长期在这种供电环境下运行,会大大缩短设备的使用寿命,增加数据中心设备故障率,有时供电的波动也会造成设备无法正常 运行,造成业务中断。

1.跌落。一 般是由重载接通、电网电压低下造成的,这时供电电压出现了突然的降低。数据中心对设备要求有承受跌落的能力。衡量的标准是电压跌落 的幅度和时间,一般要求电压跌落至20%额定电压时,设备能保持正常运行0.625S。这个数据参考了UPS的切换时间,UPS的供电切换时间可以 达到几百毫秒以内,当发生跌落时,可以在UPS将供电从一路切换到另一路的时间内,设备保持正常运行。

2.失电。一般是由气 候恶劣、变压器故障造成的。失电是指由于线路故障而引起的失电开关跳闸,又在很短的时间内迅速消除,这个过程往往在几个毫米内就完 成。失电比跌落要严酷,相当于在短时间内设备完成没有供电,只是持续的时间要比跌落短。设备要做到不受失电的影响,就需要设计有一 个大电容。在失电发生时,电容接管供电进行短时的放电,维持设备运行,当然具有这样功能的基本都是承载核心业务、关键业务的高端设 备。

无功功率补偿计算软件

4.电气噪声。一般是由雷达、无线电信号、工业设备生产的弧光、转换器和逆变器造成的。数 据中心里都是清一色的用电设备,在运行时必然会产生一些非本意用途的无规则的微弱电流、电压或电磁场等。为了消除这些噪声对周围设 备的影响,都会要求设备运行时漏电流、电压不能过大,对设备的漏电流大小也有明确要求。当我们用手触碰一些设备时,有时会被电到, 要么是设备没有很好的接地,要么是设备的漏电流过大,不符合标准要求。

7.瞬变。一般来自雷击、电源线负载设 备的切换、功率因数补偿电容的切换、空载电动机的断开等。电网瞬变的特点是脉冲成群出现、脉冲的重复率高、脉冲波形的上升时间短暂 、单个脉冲的能量较低。这种瞬变造成数据中心设备故障的几率较小,但使设备产生误动作的情况却很常见。

答:交流输电线路的主要参数包括串联电阻、串联电抗和并联电导、并联电容。输电线路输送功率时,串联电抗上的电流滞后于电 压,串联电抗吸收无功功率;并联电容上的电压滞后于电流,并联电容发出无功功率。串联电抗吸收的无功功率与流过输电线路电流的平方 成正比,因此串联电抗吸收的无功功率随负荷大小的变化而变化;并联电容发出的无功功率与输电线路的电压的平方成正比,当线路电压维 持在标称电压允许的范围内时,并联电容发出的无功功率基本保持恒定。当线路发出的无功功率恰好等于其吸收的无功功率时,此时线路的 输送功率为线路的自然功率,沿线路各点的电压幅值大小相同;当线路的输送功率小于线路的自然功率时,线路发出的无功功率将大于吸收 的无功功率;当线路的输送功率大于线路的自然功率时,线路发出的无功功率将小于吸收的无功功率。

答:由于特高压输电线路电压等级高,其无功功率的一个显著特点就是线路电容产生的无功功 率很大,对于100公里的特高压线路,在额定电压为1000千伏以及最高运行电压为1100千伏的条件下,发出的无功功率可以达到40万千乏~50 万千乏,约为500千伏线路的5倍。同时,在特高压电网不同的发展时期,特高压输电线路传输的功率有较大分别,因此无功功率的变化也很 不一样。特高压电网在建设初期,主要是实现点对点的电能输送,受系统阻抗特性及稳定极限的限制,输送功率将小于线路的自然功率,线路 发出的容性无功功率过剩;随着特高压电网的进一步建设,特高压电网将实现各区域电网的互联,电网的输送功率将有很大提高,而且为了 充分利用各区域电网的发电资源,实现水火电互济和更大范围内的资源优化配置,特高压电网的输送功率将随时变化,因而输电线路的无功 功率也将频繁变化。

答:在交流特高压输电线路输送功率较小时,并联电容产生的无功功率大于串联电抗消耗的无功功率,电网无功 过剩较大,电压上升,危及设备和系统的安全;在线路末端三相开断或故障后非全相开断时,线路上将产生工频过电压,同样危及设备和系 统的安全。为了保持输电线路的无功平衡,特别是为了限制轻载负荷引起的电压升高和线路开断时引起的工频过电压,通常需要在线路送端 和受端或其中一端装设固定高压并联电抗器来进行无功补偿。高压并联电抗器可以在线路带轻载负荷的情况下吸收线路并联电容发出的无功 功率,减少过剩的无功功率,限制工频过电压。但是加装固定高压并联电抗器后,在输电线路带重载负荷的情况下,线路电抗需要吸收的无 功功率将大于电容发出的无功功率,线路还需要从送端、受端吸收大量的无功功率。为保证正常的功率输送,通常还采用低压无功补偿设备 。低压无功补偿设备一般安装在特高压变压器低压侧绕组,分为容性补偿设备和感性无功补偿设备,根据线路传输功率的变化分组投切。

答:晋东南-南阳-荆门交流特高压试验示范工程中为例,晋东南 -南阳线路长度为363公里,荆门-南阳线路长度为291公里,设计拟采用的高抗配置为:晋东南侧高抗配置容量为96万千乏;晋东南-南阳 线路南阳侧高抗与南阳-荆门线路南阳侧高抗容量相同,均为72万千乏;荆门侧按60万千乏配置。设计拟采用的低压无功补偿配置方案为: 晋东南和荆门站配置低压无功补偿装置,低压电容器组单组容量为24万千乏,低压电抗器单组容量为24万千乏,两站各配置3组低压电容和2 组低压电抗。

答:为限制工频过电压,特高 压输电线路上安装了大容量的固定高抗,会产生一些负面影响:轻载负荷运行情况下线路的电压偏高或重载负荷运行情况下线路电压偏低。 在变压器的低压侧安装低压无功补偿装置,一方面增加了无功补偿的投资,另一方面,由于受变压器低压侧绕组容量的限制,低压无功补偿 可能不完全满足要求。特高压输电线路的无功补偿仅依靠固定高压并联电抗器加低压无功补偿设备的模式不够灵活方便。如果用可控电抗补 偿代替固定电抗补偿,则能兼顾工频过电压限制和无功功率的调节。可控电抗的调节方式是:线路输送功率小时,电抗补偿容量处于最大值 ,限制线路电压的升高;随着线路输送功率的增加平滑或分级减少电抗的补偿容量,使线路串联电抗吸收的无功主要由并联电容产生的无功 功率来平衡;当三相跳闸甩负荷时,快速反应增大电抗补偿容量来限制工频过电压。前苏联曾在500千伏和750千伏系统采用带火花间隙投入 的并联电抗器,在线路重载时,用断路器退出并联电抗器,维持线路电压;当线路甩负荷出现的工频过电压超过火花间隙放电电压时,火花 间隙击穿,快速投入并联电抗器以限制过电压。带火花间隙投入并联电抗器方式比较复杂,而且火花间隙的放电电压的分散性较大,可靠性 不高。俄罗斯和印度研制并采用了可控高压电抗器,其类型包括磁饱和式可控电抗器(MCSR)(又称磁阀式可控电抗器)和变压器式可控电 抗器(TCSR)两种。至今,俄罗斯有500千伏磁饱和式可控电抗器在试运行,在印度有400千伏变压器式可控电抗器(根据俄罗斯技术制造) 投入运行。在国内的可控电抗研究方面,国内厂家已与国内外有经验的大学和研究所合作,在研制500千伏可控电抗器的同时研制1000千伏特 高压可控电抗器,计划通过500千伏样机的挂网试运行,积累经验,争取可控高抗早日在特高压工程中应用。

无功功率补偿计算软件

配电网中损耗原因有很多,其中线损和网损是最主要的两种。本文首先介绍了线损和网损的理论计算方法,然后从多个角度提出了 降低配电网的措施。

调节负载的平衡性。当正常运行中出现三相不对称运行时,会出现负序、零序分量,将产生附加损耗, 使整流器波纹系数增加,引起变压器饱和等,经补偿设备就可使不平衡负载变成平衡负载。