三相不平衡 无功补偿

②智能建筑中线缆密 布,系统设备繁多,微电子装备复杂,且防护能力弱,高次谐波将会使智能化系统设备产生误码、错码、误动作,使信号系统受到污染、产 生噪声,甚至连通话质量都不能保证。随着低电压信号在IT设备中使用的增加,比特错误率也随之提高,甚至可以高到使整个网络瘫痪。

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明 显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集 中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾 。

凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成, 外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为 不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ 可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。

三相不平衡 无功补偿

谐波电流和谐波电压将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产 生共振及噪声。

由于谐波电流使开关设备在起动瞬间产 生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

高频谐波电流会在导体中引起集肤效应,产生额外温升增加铜耗。 特别是零序的3次谐波电流在中性线中是相互叠加的,使供电系统中的中性线电流很大,有的中性线上的电流还会超过相电流,使中性线发热 ,加速绝缘层老化,甚至引起火灾。此外当中性线上有较大的谐波电流时,导线的阻抗能产生大的中性线电压降,干扰各种微电子系统的正 常工作。

在实际工业生产中为消除变频器高次谐 波对电气设备的干扰,主要从抑制干扰源、切断干扰对系统的耦合通道并且避免功率补偿电容器与系统谐振二个方面解决。

隔 离技术是电磁兼容性中的重要技术之一。所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。

接地的作用有两类:一是保护 人和设备不受损害(保护接地);二是抑制干扰(工作接地)。正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的 干扰。

当系统上存在谐波时,使用调谐滤波电容器组,是功率因数补偿的最佳方法之一。 由电容器和电抗器串联组成的非调谐滤波电容器 组,可以在基波频率段补偿无功功率,同时解调谐振电路的自谐振频率。

三相不平衡 无功补偿

当系统中的变频器主要用于三相四线中的单相电路时,谐波以相序为零的3次谐波为主,应该安装并联式3次 谐波 滤波器。

3.额定电压(UR)。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直 流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在 空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的 电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4.损耗角正切(tgδ)。在规定频率的正弦电压下,电 容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路 如附图所示。对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。